מספר p-אדי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
Nuvola apps edu mathematics blue-p.svg

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.


בתורת המספרים וענפים שונים במתמטיקה, מספר p־אדי הוא פיתוח פורמלי לפי בסיס ראשוני הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} , שהוא סופי בצד החזקות השליליות , ועשוי להיות אינסופי בצד החזקות החיוביות. במובן זה, המספרים ה־p־אדיים הפוכים לשברים העשרוניים הרגילים, שהם סופיים מצד החזקות החיוביות, ועשויים להמשיך לאינסוף בצד החזקות השליליות. אוסף המספרים ה־p־אדיים תלוי במספר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} , וכך קיימים מספרים 2־אדיים, 3־אדיים, 5־אדיים, וכן הלאה.

תכונות

במספר p־אדי, שצורתו הכללית

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_{-N}p^{-N}+\cdots+a_0+a_1p+a_2p^2+\cdots}

עשויים המקדמים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_{-N},\dots,a_0,a_1,a_2,\ldots} להיות מספרים שלמים כלשהם. אולם, כל מספר p־אדי ניתן להציג גם באופן כזה שהמקדמים יהיו בטווח הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0\le a_i<p} , והצגה זו היא יחידה. על כן מקובל להניח שתנאי זה מתקיים עבור המקדמים. מבין מספרים ה־p־אדיים, השלמים ה־p־אדיים הם הביטויים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_0+a_1p+a_2p^2+\cdots} , שבהם אין חזקות שליליות של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} .

מרחק בין שני מספרים

בין מספרים ה־p־אדיים מגדירים מרחק לפי חזקת הגדולה ביותר המחלקת את ההפרש – ככל שהחזקה גדולה יותר, המספרים קרובים יותר. באופן פורמלי, אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a=a_0+a_1p+a_2p^2+\cdots} אזי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |a|_p=p^{-k}} כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k} המספר הקטן ביותר המקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_k\ne0} . כמו כן, מגדירים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |0|_p=0} . המטריקה היא .

תחת הגדרה זו, כל מספר p־אדי מהווה טור מתכנס, משום שהגורמים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_np^n} הולכים ונעשים קטנים יותר. בין המספרים ה־p־אדיים, הסדרה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1,p,p^2,p^3,\ldots} שואפת לאפס, בעוד שבמספרים הממשיים דווקא הסדרה ההפוכה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1,p^{-1},p^{-2},\ldots} היא השואפת לאפס. היפוך תפקידים זה בין המספרים הממשיים למספרים ה־p־אדיים הוא המאפשר לחקור את המספרים הרציונליים דרך התבוננות במספרים הממשיים ובמספרים ה־p־אדיים בעת ובעונה אחת.

הצגת מספר שלילי

לפי ההגדרה, המקדמים בהצגה כטור חזקות הם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_n\in\{0,1,\ldots,p-1\}} שלכאורה הם חיוביים ולכן ניתן לחשוב שאי אפשר להציג מספרים שליליים בתור מספרים p־אדים. זה לא נכון. למשל: יהי ונתבונן במספר

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ldots222=2\cdot1+2\cdot3+2\cdot3^2+\cdots}

נחבר לו את המספר 1, נקבל

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{array}{r}\ldots\stackrel{1}{2}\stackrel{1}{2}\stackrel{}{2}\\^{+}\ldots001\\\hline\ldots000\end{array}}

שכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+2=3} ולכן מקבלים 0 בעמודה הראשונה ומוסיפים 1 בתור נשא (carry) לעמודה השנייה, אך גם שם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+2=3} ולכן גם שם מקבלים 0 ומוסיפים 1 לעמודה הבאה, וכך הלאה. בסופו של דבר מקבלים:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ldots222+1=0}

ולכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -1=\ldots222=2\cdot1+2\cdot3+2\cdot3^2+\cdots}

במקרה הכללי מתקיים . אפשר להוכיח זאת כמו בדוגמה של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p=3} אך יש הוכחה אלגנטית יותר המשתמשת בנוסחה לסכום של טור הנדסי אינסופי (שהרי טור בחזקות הולכות וגדלות של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} מתכנס במטריקה ה־p־אדית). כאן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_0=p-1,q=p} ולכן

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S=\frac{a_0}{1-q}=\frac{p-1}{1-p}=-1}

כעת, כל מספר שלילי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m} ניתן להציג כמכפלה של ההצגה ה־p־אדית של בהצגה ה־p־אדית של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -1} .

הצגת מספר רציונלי

כל מספר רציונלי ניתן להציג, באופן יחיד, בתור מספר p־אדי, שהוא לעולם מחזורי (ולהפך: מספר p־אדי הוא רציונלי אם ורק אם ההצגה שלו מחזורית). למשל, בשדה המספרים ה־5־אדיים,

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac23=4+1\cdot5+3\cdot5^2+1\cdot5^3+3\cdot5^4+\cdots}

אכן, חזקות של המספר 5 שואפות לאפס (ולא לאינסוף), ולכן הטור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S=1+5^2+5^4+5^6+\cdots} מתכנס וסכומו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S=\frac{1}{1-5^2}=-\frac{1}{24}} . לכן הסכום לעיל מתכנס לתוצאה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 4+5\cdot S+3\cdot5^2\cdot S=4-\frac{80}{24}=\frac23} .

השבר המצומצם הוא שלם p־אדי אם ורק אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} אינו מחלק את המכנה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle b} . למספרים שלמים רבים יש שורש p־אדי. למשל

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt7=1+3+3^2+2\cdot3^4+2\cdot3^7+3^8+\cdots}

(ביטוי זה אינו מחזורי). כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p\ne2} ו־ מספר שלם חופשי מריבועים וזר ל־הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} , יש ל־הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a} שורש p־אדי אם ורק אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a} הוא שארית ריבועית מודולו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} . בין המספרים ה־p־אדיים לא ניתן להגדיר יחס סדר, מכיוון שלמספר השלילי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1-p^3} תמיד יש שורש p־אדי.

חשיבותם של המספרים ה־p־אדיים היא בכך שניתן להגדיר ביניהם פעולות של חיבור וכפל המחקות את אלה של המספרים הרציונליים. הרחבה זו של הפעולות אפשרית מכיוון שהביטוי ה־p־אדי נמשך לאינסוף רק בכיוון אחד. על ביטויים מאותו סוג הנמשכים לאינסוף לשני הכיוונים לא ניתן להגדיר פעולת כפל סבירה, והם חסרי ערך מתמטי.

הגישה האלגברית

ניתן להגדיר מספר p־אדי כסדרה הבאה:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x=(\ldots,x_n,\ldots,x_1)=(x_n)_{n=1}^\infty}

כך שלכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n\ge1} מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_n\in\Z/p^n\Z} (כלומר: כל אבר או רכיב בסדרה שייך לחוג הסופי של השלמים מודולו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} ). כמו כן, על רכיביה להתאים אחד לשני באופן הבא:

  • הם מקיימים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \forall n\le m:x_n=x_m\mod p^n}
  • או באופן שקול, המעבר מ־הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_n} ל־ נעשה על ידי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x+p^n\mapsto x+p^{n-1}} .

נסתכל בקבוצת כל הסדרות הנ"ל, קבוצה זו נקראת גבול הפוך או גבול פרויקטיבי. עבור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} ראשוני נתון, הגבול ההפוך הוא קבוצת המספרים ה־p־אדיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Z_p} . אפשר להפוך קבוצה זו לחוג על ידי הגדרת פעולות חיבור וכפל. זה נעשה באופן הבא:

  • חיבור: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x+y=(\ldots,x_n,\ldots,x_1)+(\ldots,y_n,\ldots,y_1)=(\ldots,x_n+y_n,\ldots,x_1+y_1)}
  • כפל: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x\cdot y=(\ldots,x_n,\ldots,x_1)\cdot(\ldots,y_n,\ldots,y_1)=(\ldots,x_ny_n,\ldots,x_1y_1)}

למעשה, מחברים וכופלים מספרים p־אדיים על ידי חיבור וכפל אבר־אבר (לפי רכיבים: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_n+y_n,x_n\cdot y_n\in\Z/p^n\Z} ).

זהו חוג עם אפס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0=(\ldots,0,0)} ויחידה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1=(\ldots,1,1,1)} . יתרה מזו, זהו גם תחום שלמות ולכן ניתן לבנות את שדה השברים על ידי לוקליזציה. שדה זה נקרא "שדה המספרים ה-p-אדיים" ומסומן .

גישה זו שימושית באלגברה מופשטת ובתורת המספרים, למשל בחישוב פתרון של משוואה פולינומית מעל חוג ה־p־אדיים באמצעות למת הנזל.

מעבר בין ההצגה כטור חזקות להצגה כגבול הפוך

נתון הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} ראשוני, ונרשום שלם p־אדי כטור חזקות וכסדרה של גבול הפוך:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (\ldots,x_n,\ldots,x_1)=a_0+a_1p+a_2p^2+a_3p^3+\cdots}

כדי לעבור מטור חזקות לסדרה יש לקחת סכומים חלקיים באופן הבא:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_{n+1}=\sum_{k=0}^na_kp^k}

בכיוון השני, אפשר להשתמש בחישוב רקורסיבי באופן הבא:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl}a_0&=&x_1\\a_1&=&\frac{x_2-x_1}{p}\\a_2&=&\frac{x_3-x_2}{p^2}\\a_3&=&\frac{x_4-x_3}{p^3}\\&\vdots&\\a_n&=&\frac{x_{n+1}-x_n}{p^n}\\&\vdots&\end{array}}

או בנוסחה מפורשת:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_n=\frac{x_{n+1}-x_n}{p^n}=x_{n+1}\ \text{div}\ p^n}

כאשר div הוא חילוק שלם, כלומר: לקיחת החלק השלם וזריקת השארית (למשל: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 8\ \text{div}\ 3=(2+3\cdot2)\ \text{div}\ 3=2} ).

שדה המספרים וחוג השלמים ה־p־אדיים

קבוצת המספרים ה־p־אדיים מרכיבה שדה, הנקרא שדה המספרים ה-p-אדיים. אוסף השלמים ה־p־אדיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Z_p} מהווה חוג מקומי בשם חוג השלמים ה-p-אדיים, המתייחס אל שדה המספרים ה־p־אדיים באותו יחס שיש בין חוג המספרים השלמים לשדה המספרים הרציונליים. לשדה המספרים ה־p־אדיים ולחוג השלמים המתאים לו יש תפקיד מרכזי בחקר האריתמטיקה של המספרים הרציונליים והמספרים השלמים. למשל, כדי להוכיח שלמשוואה דיופנטית אין פתרונות שלמים, די להוכיח כי אין לה פתרונות p־אדיים; בגלל המבנה האריתמטי הייחודי של המספרים ה־p־אדיים, זוהי לעיתים קרובות משימה קלה בהרבה.

כחבורה חיבורית, חוג השלמים ה־p־אדיים הוא גבול פרויקטיבי של החבורות הציקליות מסדר . אוסף ההעתקות הרציפות מ־הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Z_p} למעגל היחידה המרוכב הוא החבורה החליקה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Z[1/p]/\Z=\bigcup_{n=1}^\infty p^{-n}\Z/\Z} .

ראו גם

קישורים חיצוניים



סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0