צירוף ליניארי

מתוך המכלול, האנציקלופדיה היהודית
גרסה מ־17:18, 5 באוקטובר 2020 מאת בוט גאון הירדן (שיחה | תרומות) (החלפת קטגוריה (דרך WP:JWB))
קפיצה לניווט קפיצה לחיפוש

באלגברה לינארית, צירוף לינארי הוא סכום של מספר סופי של וקטורים שכל אחד מהם מוכפל בסקלר. בגלל סגירותו של המרחב הווקטורי ביחס לחיבור וכפל בסקלר, הצירוף הלינארי אף הוא וקטור השייך לאותו מרחב וקטורי. בהינתן קבוצה מתאימה של וקטורים - קבוצה פורשת - ניתן לכתוב כל וקטור במרחב כצירוף לינארי של איברים מתוך הקבוצה.

מבחינה פורמלית, צירוף לינארי מוגדר כך. בהינתן סדרה v1,v2,...,vk של וקטורים במרחב, וסדרה α1,α2,...,αk של סקלרים, נקרא לביטוי

α1v1+α2v2+...+αkvk

צירוף לינארי של הווקטורים. בקיצור ניתן לכתוב i=1kαivi

קבוצה תיקרא תלויה לינארית אם קיים בה וקטור שהוא צירוף לינארי של וקטורים אחרים מהקבוצה. או באופן שקול, קבוצה היא תלויה לינארית אם קיים צירוף לינארי לא טריוויאלי של איבריה (לא כל הסקלרים אפס) ששווה לווקטור האפס.

בהתאם לכך וקטור האפס יהיה תמיד צירוף לינארי של כל קבוצת וקטורים, וכשהוא יינתן בתוך קבוצה אזי הקבוצה תהיה תלויה לינארית.