מטריצה משולשית


מטריצה משולשית עליונה היא מטריצה ריבועית שבה כל האיברים שמתחת לאלכסון הראשי שווים לאפס, כלומר האיברים היחידים במטריצה שאינם שווים בהכרח לאפס מופיעים במשולש העליון שמעל האלכסון הראשי (כולל האלכסון עצמו). באופן דומה, מטריצה משולשית תחתונה היא מטריצה בה כל האיברים שמעל האלכסון הראשי הם אפסים. מטריצה שהיא משולשית עליונה ומשולשית תחתונה נקראת מטריצה אלכסונית.
כל מטריצה משולשית תחתונה היא מטריצה משוחלפת של מטריצה משולשית עליונה מתאימה, ולהיפך. מהסיבה הזו ניתן להמיר כמעט כל תכונה של המטריצות המשולשיות עליונות ולתכונה מתאימה של המשולשיות תחתונות.
החישובים העוסקים במטריצות משולשיות הם נוחים יחסית. למשל, הדטרמיננטה של מטריצה משולשית היא מכפלת איברי האלכסון שלה. מכפלה של שתי מטריצות משולשיות עליונות היא מטריצה משולשית עליונה, ואיברי האלכסון שלה הם מכפלת איברי האלכסון של שתי המטריצות. תכונה זו נותנת מאפיין פשוט לנילפוטנטיות של מטריצה משולשית מעל חוג קומטטיבי - המטריצה נילפוטנטית אם ורק אם כל איברי האלכסון שלה הם איברים נילפוטנטיים. בפרט, כאשר עוסקים במטריצות מעל שדה המטריצה נילפוטנטית אם ורק אם כל איברי האלכסון הם אפסים.
ראו גם
נושאים באלגברה ליניארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה ליניארית • מערכת משוואות ליניאריות • העתקה ליניארית • מטריצה | |
וקטורים | סקלר • כפל בסקלר • צירוף ליניארי • תלות ליניארית • קבוצה פורשֹת • בסיס • וקטור קואורדינטות • ממד | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דירוג מטריצות • דרגה • עקבה • מטריצה מצורפת • מטריצת מעבר • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • לכסון מטריצות • צורת ז'ורדן | |
העתקות | העתקה ליניארית • קואורדינטות • מטריצה מייצגת • גרעין • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • טרנספורמציה נורמלית • נורמה • מטריקה | |
תבניות | תבנית ביליניארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-ליניארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |