משפט דארבו

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באנליזה מתמטית, משפט דארבו (על שם המתמטיקאי ז'אן גסטון דארבו) הוא הכללה של משפט ערך הביניים עבור פונקציות שהן נגזרת (כלומר, קיימת להן פונקציה קדומה).

על-פי המשפט, אם פונקציה גזירה בקטע סגור, פונקציית הנגזרת שלה מקבלת כל ערך בין הערכים שהיא מקבלת בקצוות הקטע, גם אם פונקציית הנגזרת אינה רציפה בעצמה.

ניסוח פורמלי

תהא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)} פונקציה גזירה בקטע הפתוח הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (a,b)} , גזירה מימין בנקודה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a} וגזירה משמאל בנקודה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle b} . אזי לכל בין הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f'(a)^+} ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f'(b)^-} קיימת הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c\in[a,b]} עבורה .

משפט דארבו מהווה הכללה של משפט ערך הביניים שכן כל פונקציה רציפה מקיימת את משפט ערך הביניים, אך כוחו בכך שהנגזרת אינה חייבת להיות בהכרח רציפה כדי שהמשפט יתקיים.

הוכחה

אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f'(a)^+=f'(b)^-} הטענה ברורה מאליה.

נניח ללא הגבלת הכלליות כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f'(a)^+<y<f'(b)^-} .

נגדיר פונקציה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(x)=f(x)-yx} . זו גזירה בקטע הפתוח הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (a,b)} ובעלת נגזרות חד-צדדיות בקצות הקטע כהפרש פונקציות גזירות בקטע וחד-צדדית בקצותיו.

נגזרתה היא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g'(x)=f'(x)-y} והיא מקיימת הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g'(a)^+<0<g'(b)^-} כי:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{matrix}g'(a)^+=f'(a)^+-y<0\\g'(b)^-=f'(b)^--y>0\end{matrix}}

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g} רציפה בקטע הסגור כהפרש פונקציות רציפות. לפיכך, על-פי המשפט השני של ויירשטראס היא מקבלת מינימום בקטע זה.

  • מינימום זה לא יכול להתקבל בנקודה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a} כיון ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g'(a)^+<0} ולכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g} יורדת מקומית שם.
  • מינימום זה לא יכול להתקבל בנקודה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle b} כיון ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g'(b)^->0} ולכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g} עולה מקומית שם.

לפיכך, המינימום חייב להתקבל בנקודה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c\in(a,b)} .

ממשפט פרמה נובע כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g'(c)=f'(c)-y=0} . לכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f'(c)=y} .

מסקנה ממשפט דארבו

מסקנה מעניינת ממשפט דארבו היא שנקודות אי-הרציפות של הנגזרת הן מסוג "אי-רציפות עיקרית" בלבד. בפרט, לפונקציה בעלת נקודת אי-רציפות סליקה או אי-רציפות מסוג "דילוג" אין פונקציה קדומה.

מסקנה נוספת היא שהמשפט ההפוך למשפט ערך הביניים אינו נכון, כיוון שקיימות נגזרות שאינן רציפות אבל כן מקיימות את תכונת ערך הביניים. גם המשפט ההפוך למשפט דארבו אינו נכון. לא לכל פונקציה המקיימת את תכונת ערך הביניים יש פונקציה קדומה. דוגמה נגדית היא פונקציית בסיס 13 של קונוויי.