חיבור (מטריצות)

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
גודל המטריצות זהה

חיבור מטריצות הוא פעולה במתמטיקה בה מחברים שתי מטריצות על ידי חיבור הרכיבים התואמים של כל אחת מהן. קיימות פעולות חיבור נוספות (סכום ישר וסכום קרונֶקֶר) המוסברות בהמשך.

חיבור רגיל

אופן חיבור מטריצות

על שתי המטריצות להיות עם אותו מספר שורות ועמודות.

סכום המטריצות A ו B המסומן ב A + B, הוא מטריצה בעלת מספר שורות ועמודות זהה, בו כל רכיב הוא סכום הרכיבים התואמים ממטריצות המקור:

𝐀+𝐁=[a11a12a1na21a22a2nam1am2amn]+[b11b12b1nb21b22b2nbm1bm2bmn]=[a11+b11a12+b12a1n+b1na21+b21a22+b22a2n+b2nam1+bm1am2+bm2amn+bmn]


לדוגמה:

[131012]+[007521]=[1+03+01+70+51+22+1]=[138533]


באופן דומה ניתן לחסר מטריצה אחת מחברתה כל עוד ממדיהן זהים (כמו בחיבור).

הפעולה AB מבוצעת על ידי חיסור הרכיב ב B מהרכיב התואם ב A.

לדוגמה:

[131012][007521]=[103017051221]=[136511]


לפעולת חיבור זו על מטריצות A, B ו C שאיבריהן שייכים לשדה הממשיים (למשל) יש מספר תכונות:

  • סימטריה - תהי A המטריצה בה קיים איבר נגדי לכל איבר תואם ב A, אזי A+(A)=O ו (A)+A=O.

סכום ישר

פעולת חיבור אחרת, פחות בשימוש, היא סכום ישר שמצוינת ב ⊕. משתמשים בסימן זה גם לפעולת החיבור סכום קרונקר וניתן ללמוד מההקשר באיזו משתי הפעולות מדובר.

הסכום הישר של שתי מטריצות: A בגודל m × n ו B בגודל p × q הוא מטריצה שגודלה (m + p) × (n + q):


𝐀𝐁=[𝐀00𝐁]=[a11a1n00am1amn0000b11b1q00bp1bpq]


לדוגמה:

[132231][1601]=[13200231000001600001]


הסכום הישר של מטריצות הוא למעשה סוג של מטריצת בלוקים. בפרט הסכום הישר של מטריצה ריבועית הוא מטריצת בלוקים אלכסונית (ראה: מטריצה אלכסונית).

באופן כללי, סכום ישר של n מטריצות הוא:


i=1n𝐀i=diag(𝐀1,𝐀2,𝐀3𝐀n)=[𝐀1000𝐀2000𝐀n]

האפסים הם בלוקים של אפסים, כלומר מטריצות אפסים.

כל רכיב בסכום הישר של שני מרחבים וקטוריים של מטריצות יכול להיות מוצג כסכום ישר של שתי מטריצות.

מטריצת השכנות של איחוד גרפים זרים או מולטיגרף היא סכום ישר של מטריצות השכנות שלהם.

סכום קרונקר

כאמור, גם סכום זה מסומן ב ⊕. הוא מוגדר באמצעות שימוש במכפלת קרונקר המסומנת ב ⊗ עם חיבור מטריצות רגיל. אם A הוא בגודל n × n ו B בגודל m × m ו 𝐈k מציין את מטריצת הזהות k × k, סכום קרונקר מוגדר על ידי:

𝐀𝐁=𝐀𝐈m+𝐈n𝐁.


קישורים חיצוניים

  • חיבור, באתר MathWorld (באנגלית)
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

חיבור (מטריצות)35404463Q2264115